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Abstract. Splitting results in non-mononotonic formalisms have a long
tradition. On the one hand, these results can be used to improve existing
computational procedures, and on the other hand they yield deeper the-
oretical insights into how a non-monotonic approach works. In the 90‘s
Lifschitz and Turner [1, 2] proved splitting results for logic programs and
default theory. In this paper we establish similar results for Dung style
argumentation frameworks (AFs) under the most important semantics,
namely stable, preferred, complete and grounded semantics. Furthermore
we show how to use these results in dynamical argumentation.

1 Introduction

Argumentation frameworks (AFs) as introduced in the seminal paper of Dung [3]
are static. Since argumentation is a dynamic process, it is natural to investigate
the dynamic behavior of AFs. In recent years the first publications appeared
that deal with the problem of dynamical argumentation. One main direction in
this field of research is to study the problem of how extensions of an AF may
change if new (old) arguments and/or attack relations are added (deleted) (see,
e.g. [4] and the references therein). A further question in this context is how to
construct the extensions of an expanded AF by using the (already computed)
acceptable sets of arguments of the initial AF. A solution to this problem is
obviously of high interest from a computational point of view, especially in case
of a huge number of arguments and attacks between them.

In 1994 Lifschitz and Turner [1] published splitting results for logic programs.
They have shown that, under certain conditions, a logic program P can be
split into two parts P1 and P2 such that the computation of an answer set
can be considerably simplified: one computes an answer set E1 of P1, uses E1

to modify P2, computes an answer set E2 of the modification of P2 and then
simply combines E1 and E2. We conveyed this idea to Dung‘s argumentation
frameworks. It turns out that for stable semantics the result is similar to logic
programs. However, for preferred, complete and grounded semantics, a more
sophisticated modification is needed which takes into account that arguments
may be neither accepted nor refuted in extensions.

Our definition of a splitting is closely connected with a special class of ex-
pansions, so-called weak expansions. This interrelation allows us to transfer our
splitting results into the field of dynamical argumentation.



The paper is organized as follows: Section 2 reviews the necessary defini-
tions at work in argumentation frameworks. The third section introduces new
concepts like: Splitting, Expansion, Reduct, Undefined Set and Modification.
Section 4, the main part of this paper, contains the splitting results for sta-
ble, preferred, complete and grounded semantics. Furthermore we compare the
splitting theorem with a former monotonicity result. In section 5 we turn to
dynamical argumentation. We concentrated on two issues: How to reuse already
computed extensions and new terms of equivalence between two AFs. Finally,
in section 6 we discuss related results and present our conclusions.

2 Preliminaries

We start with a brief review of the relevant definitions in argumentation theory.

Definition 1. An argumentation framework A is a pair (A,R), where A is a
non-empty finite set whose elements are called arguments and R ⊆ A × A a
binary relation, called the attack relation.

If (a, b) ∈ R holds we say that a attacks b, or b is attacked by a. In the following
we consider a fixed countable set U of arguments, called the universe. Quantified
formulae refer to this universe and all denoted sets are finite subsets of U or
U × U respectively. We introduce the union for two AFs F = (AF , RF ) and
G = (AG, RG) as expected, namely F ∪ G = (AF ∪ AG, RF ∪ RG). Furthermore
we will use the following abbreviations.

Definition 2. Let A = (A,R) be an AF, B and B′ subsets of A and a ∈ A.
Then

1. (B,B′) ∈̄ R ⇔def ∃b∃b′ : b ∈ B ∧ b′ ∈ B′ ∧ (b, b′) ∈ R,
2. a is defended by B in A ⇔def ∀a′ : a′ ∈ A ∧ (a′, a) ∈ R → (B, {a′}) ∈̄ R,
3. B is conflict-free in A ⇔def (B,B) �̄∈ R,
4. cf(A) = {C |C ⊆ A,C conflict-free in A}.

Semantics of argumentation frameworks specify certain conditions for selecting
subsets of a given AF A. The selected subsets are called extensions. The set
of all extensions of A under semantics S is denoted by ES(A). We consider the
classical (stable, preferred, complete, grounded [3]) and the ideal semantics [5].

Definition 3. Let A = (A,R) be an AF and E ⊆ A. E is a

1. stable extension ( E ∈ Est(A)) iff
E ∈ cf(A) and for every a ∈ A\E, (E, {a}) ∈̄ R holds,

2. admissible extension1 (E ∈ Ead(A)) iff
E ∈ cf(A) and each a ∈ E is defended by E in A,

3. preferred extension (i.e. E ∈ Epr(A)) iff
E ∈ Ead(A) and for each E′ ∈ Ead(A), E 6⊂ E′ holds,

1 Note that it is more common to speak about admissible sets instead of the admissible
semantics. For reasons of unified notation we used the uncommon version.



4. complete extension (E ∈ Eco(A)) iff
E ∈ Ead(A) and for each a ∈ A defended by E in A, a ∈ E holds,

5. grounded extension (E ∈ Egr(A)) iff
E ∈ Eco(A) and for each E′ ∈ Eco(A), E′ 6⊂ E holds,

6. ideal extension of A (E ∈ Eid(A)) iff
E ∈ Ead(A), E ⊆

⋂

P∈Epr(A) P and for each A ∈ Ead(A) w.t.p. A ⊆
⋂

P∈Epr(A) P holds E 6⊂ A.

3 Formal Foundation

In this section we will develop the technical tools which are needed to prove the
splitting results.

3.1 Splitting and Expansion

Definition 4. Let A1 = (A1, R1) and A2 = (A2, R2) be AFs such that A1 ∩
A2 = ∅. Let R3 ⊆ A1 × A2. We call the tuple (A1,A2, R3) a splitting of the
argumentation framework A = (A1 ∪ A2, R1 ∪ R2 ∪ R3).

For short, a splitting of a given AF A is a partition in two disjoint AFs A1

and A2 such that the remaining attacks between A1 and A2 are restricted to
a single direction. In [6] we studied the dynamical behavior of extensions of
an AF. Therefore we introduced a special class of expansions of AFs, so-called
normal expansions. Weak and strong expansions are two different subclasses of
these expansions. After a short review of the definitions we will show that these
kinds of expansions and the introduced splitting definition are in a sense two
sides of the same coin. This observation allows us to convey splitting results into
dynamical argumentation and vice versa.

Definition 5. An AF A∗ is an expansion of AF A = (A,R) iff A∗ can be
represented as (A ∪ A∗, R ∪ R∗) for some nonempty A∗ disjoint from A and
some (possibly empty) R∗ disjoint from R . Such an expansion is called to be

1. normal (A ≺N A∗) iff ∀ab ((a, b) ∈ R∗ → a ∈ A∗ ∨ b ∈ A∗),

2. strong (A ≺N
S A∗) iff A ≺N A∗ and ∀ab ((a, b) ∈ R∗ → ¬(a ∈ A ∧ b ∈ A∗)),

3. weak (A ≺N
W A∗) iff A ≺N A∗ and ∀ab ((a, b) ∈ R∗ → ¬(a ∈ A∗ ∧ b ∈ A)).
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The figure above illustrates a weak expansion2. The dashed arrows represent the
additional attack relation R∗. The following proposition establishes the connec-
tion between splittings and weak expansions. Note that this property is pretty
obvious. Being aware of this fact, we still present it in the form of a proposition.

Proposition 1. If (A1,A2, R3) is a splitting of A, then A is a weak expansion
of A1. Vice versa, if A = (A,R) is a weak expansion of A1 = (A1, R1), then
(A1,A2, R3) with A2 = (A\A1, R∩ (A\A1 ×A\A1)) and R3 = R∩ (A1 ×A\A1)
is a splitting of A.

3.2 Reduct, Undefined Set and Modification

Now we turn to the central definitions of our paper. The main goal is to establish
a connection between the extensions of an AF A and a given splitting of it.
Consider therefore the following example.

Example 1. Let (A1,A2, {(a1, a5)}) be a splitting of the AF A below, where
A1 = ({a1, a2, a3, a4}, {(a1, a2), (a1, a3), (a3, a2)}) and
A2 = ({a5, a6, a7}, {(a5, a6), (a6, a7), (a7, a6)}).

a7 a6 a5 a4 a3 a2 a1

There are two stable extensions of A, namely E1 = {a1, a4, a6} and E2 =
{a1, a4, a7}. Furthermore we observe that E′ = {a1, a4} and E′′ = {a5, a7} are
the unique stable extensions of A1 and A2, respectively. Note that we cannot
reconstruct the extensions E1 and E2 out of the extensions E′ and E′′. This is
not very surprising because we do not take into account the attack (a1, a5). If
we delete the argument a5 in A2 which is attacked by E′ and then compute the
stable extensions in the reduced AF A2,red = ({a6, a7}, {(a6, a7), (a7, a6)}) we
get the “missing” singletons {a6} and {a7}. That means E1 and E2 are unions
of the extensions of A1 and a reduced version of A2.

We will see that this observation holds in general for the stable semantics. The
following definition of a reduct captures the intuitive idea.

Definition 6. Let A = (A,R) be an AF, A′ a set disjoint from A, S ⊆ A′ and
L ⊆ A′ × A. The (S,L)-reduct of A, denoted AS,L is the AF

AS,L = (AS,L, RS,L)

where
AS,L = {a ∈ A | (S, {a}) �̄∈ L)}

2 The term is inspired by the fact that added arguments never attack previous argu-
ments (weak arguments).



and
RS,L = {(a, b) ∈ R | a, b ∈ AS,L}.

The intuitionally described reduced version of the AF A2 in example 1 can be
formalized exactly in the following way: A2,red = ({a6, a7}, {(a6, a7), (a7, a6)}) =

A
E′,{(a1,a5)}
2 . Unfortunately it turns out that the reduct used above does not

obtain the desired properties for other semantics we are interested in. Here is a
counterexample:

Example 2. Consider the AF A = ({a1, a2, a3, a4}, {(a2, a2), (a2, a3), (a3, a4)}).
A has a splitting (A1,A2, {(a2, a3)}) with A1 = ({a1, a2}, {(a2, a2)}) and A2 =
({a3, a4}, {(a3, a4)}).

a4 a3 a2 a1

E1 = {a1} is the unique preferred, complete and grounded extension of A. The
same holds for the AF A1, i.e. E′ = {a1}. Consider now the (E′, {(a2, a3)})-

reduct of A2, that is A
E′,{(a2,a3)}
2 = A2. The reduct establishes the unique

extension E′′ = {a3} for all considered semantics. Yet the union of E′ and E′′

differs from E1.

The problem stems from the fact that the distinction between those arguments
which are not in the extension because they are refuted (attacked by an accepted
argument) and those not in the extension without being refuted is not taken
care of. The former have no influence on A2. However, the latter - which we
will call undefined in contrast to the refuted ones - indeed have an influence on
A2, as illustrated in the example: the fact that a2 is undefined in E′ leads to
the undefinedness of both a3 and a4, and this is not captured by the reduct.
To overcome this problem, we introduce a simple modification. We can enforce
undefinedness of a3 (and thus of a4) in A2 by introducing a self-attack for a3.
More generally, whenever there is an undefined argument a in the extension of
the first AF which attacks an argument b in the second AF, we modify the latter
so that b is both origin and goal of the attack.

Definition 7. Let A = (A,R) be an AF, E an extension of A. The set of
arguments undefined with respect to E is

UE = {a ∈ A | a 6∈ E, (E, {a}) �̄∈ R}.

Definition 8. Let A = (A,R) be an AF, A′ a set disjoint from A, S ⊆ A′ and
L ⊆ A′ × A. The (S,L)-modification of A, denoted modS,L(A), is the AF

modS,L(A) = (A,R ∪ {(b, b) | ∃a : a ∈ S, (a, b) ∈ L}).

Given a splitting (A1,A2, R3) of A, an extension E of A1 which leaves the set

of arguments UE undefined, we will use modUE ,R3
(AE,R3

2 ) to compute what
is missing from E. In case of example 2 we compute the extensions of the



({a2}, {a2, a3})-modification of the (E′, {(a2, a3)})-reduct of A2, i.e.

mod{a2},{a2,a3}

(

A
E′,{(a2,a3}
2

)

= ({a3, a4}, {(a3, a3), (a3, a4)}),

which establishes the empty set as the unique extension under all considered
semantics. Hence the union of E′ and ∅ equals the extension of the initial frame-
work A. Note that, although links are added, under all standard measures of
the size of a graph (e.g. number of links plus number of vertices) we have

|A1| + |modUE ,R3
(AE,R3

2 )| ≤ |A|.

4 Splitting Results

Now we are going to present our formal results. Our splitting results show how
to get extensions of the whole AF A with the help of a splitting. Furthermore
we prove that our method is complete, i.e. all extensions are constructed this
way. At first we will prove some simple properties of the introduced definitions.

Proposition 2. Given an AF A = (A,R) which possesses a splitting (A1,A2, R3)
s.t. A1 = (A1, R1) and A2 = (A2, R2), the following hold:

1. E1 ∈ Est(A1) ⇒ modUE1
,R3

(AE1,R3

2 ) = AE1,R3

2 ,

(neutrality of the modification w.r.t. the stable reduct)

2. E ∈ cf(A) ⇒ E ∩ A1 ∈ cf(A1) ∧ E ∩ A2 ∈ cf(AE∩A1,R3

2 ),

(preserving conflict-freeness[intersection])

3. E1 ∈ cf(A1) ∧ E2 ∈ cf(modUE1
,R3

(AE1,R3

2 )) ⇒ E1 ∪ E2 ∈ cf(A).

(preserving conflict-freeness[union])

Proof. 1. if E1 ∈ Est(A1) then all arguments in A1\E1 are attacked, consequently

UE1
= ∅ and modUE1

,R3
(AE1,R3

2 ) = AE1,R3

2 holds;
2. subsets of conflict-free sets w.r.t. A are conflict-free w.r.t. all restrictions of
A; hence, it is sufficient to show that E ∩ A1 ⊆ A1 (obvious) and E ∩ A2 ⊆

AE∩A1,R3

2 holds; assuming the existence of an argument a, s.t. a ∈ E ∩ A2 ∧

a /∈ AE∩A1,R3

2 = {a ∈ A2

∣

∣(E ∩ A1, {a}) �̄∈ R3 } leads to (E,E) ∈̄ R3 which
contradicts the conflict-freeness of E in A;
3. we have to show that (E1∪E2, E1∪E2) �̄∈ R1∪R2∪R3 holds; E1 is conflict-free
w.r.t. A1, thus (E1, E1) �̄∈ R1∪R2∪R3 because R2 and R3 do not contain attacks

from A1 to A1; E2 is conflict-free w.r.t. modUE1
,R3

(AE1,R3

2 ), hence conflict-free

w.r.t. A2 because i) R2 restricted to AE1,R3

2 × AE1,R3

2 is equal to RE1,R3

2 and

ii) the attack-relation of the (UE1
, R3)-modification of AE1,R3

2 is a super-set

of RE1,R3

2 ; thus (E2, E2) �̄∈ R1 ∪ R2 ∪ R3 because R1 and R3 do not contain
attacks from A2 to A2; it obviously holds that (E2, E1) �̄∈ R1 ∪R2 ∪R3 because
none of the relations contain attacks from A2 to A1; per definition we have
E2 ⊆ AE1,R3

2 =
{

a ∈ A2

∣

∣(E1, {a}) �̄∈ R3

}

, consequently it is impossible that
(E1, E2) ∈̄ R3 holds, therefore (E1, E2) �̄∈ R1 ∪ R2 ∪ R3 because R2 and R1 do
not contain attacks from A1 to A2 2



4.1 Monotonicity Result

In [6] we have proven the following monotonicity result. This theorem will be
used to simplify parts of the proof of the splitting theorem. Furthermore we will
see that the splitting theorem is a generalization of it.

Theorem 1. Given an AF A = (A,R) and a semantics S satisfying direction-
ality3, then for all weak expansions A∗ of A the following holds:

1. |ES(A)| ≤ |ES(A∗)|,
2. ∀E ∈ ES(A) ∃E∗ ∈ ES(A∗) : E ⊆ E∗ and
3. ∀E∗ ∈ ES(A∗) ∃Ei ∈ ES(A) ∃A∗

i ⊆ A∗ : E∗ = Ei ∪ A∗
i

Adding new arguments and their associated interactions may change the out-
come of an AF in a nonmonotonic way. Accepted arguments may become unac-
cepted and vice versa. The theorem above specifies sufficient conditions (weak
expansions + directionality principle) for monotonic behaviour w.r.t. justifica-
tion state of an argument and cardinality of extensions. Remember that the
admissible, complete, grounded, ideal and preferred semantics satisfy the direc-
tionality principle (compare [8]).

4.2 Splitting Theorem

Given a splitting of an AF A, the general idea is to compute an extension E1

of A1, reduce and modify A2 depending on what extension we got, and then
compute an extension E2 of the modification of the reduct of A2. The resulting
union of E1 and E2 is an extension of A. The second part of theorem proves the
completeness of this method, i.e. all extensions are constructed this way.

Theorem 2. (σ ∈ {st, ad, pr, co, gr}) Let A = (A,R) be an AF which possesses
a splitting (A1,A2, R3) with A1 = (A1, R1) and A2 = (A2, R2).

1. If E1 is an extension of A1 and E2 is an extension of the (UE1
, R3)-modification

of AE1,R3

2 , then E = E1 ∪ E2 is an extension of A.

(

E1 ∈ Eσ(A1) ∧ E2 ∈ Eσ(modUE1
,R3

(AE1,R3

2 )) ⇒ E1 ∪ E2 ∈ Eσ(A)
)

2. If E is an extension of A, then E1 = E ∩ A1 is an extension of A1 and
E2 = E ∩ A2 is an extension of the (UE1

, R3)-modification of AE1,R3

2 .

(

E ∈ Eσ(A) ⇒ E ∩ A1 ∈ Eσ(A1) ∧ E ∩ A2 ∈ Eσ(modUE∩A1
,R3

(AE∩A1,R3

2 ))
)

Proof. (stable)(1.) by prop. 2.3 we got the conflict-freeness of E1 ∪ E2 in A;
we now show that E1 ∪ E2 attacks all outer arguments, i.e. for every a ∈
(A1 ∪ A2)\(E1 ∪ E2) holds: (E1 ∪ E2, {a}) ∈̄ R1 ∪ R2 ∪ R3; let a be an ele-
ment of A1\(E1 ∪E2), thus a is attacked by E1 because E1 ∈ Est(A1) holds; let

3 Intuitively, the directionality principle prescribes that the acceptability of an argu-
ment a is determined only by its attackers (compare [7]).



a be an element of A2\(E1 ∪ E2); we have to consider two cases because A2 is
the disjoint union of

{

a ∈ A2

∣

∣(E1, {a}) �̄∈ R3

}

∪ {a ∈ A2 |(E1, {a}) ∈̄ R3 }; if a
is an element of the second set we have nothing to show; let a be an element the
first set, namely

{

a ∈ A2

∣

∣(E1, {a}) �̄∈ R3

}

= AE1,R3

2 ; thus a is attacked by E2

because E2 ∈ Est(modUE1
,R3

(AE1,R3

2 )) and modUE1
,R3

(AE1,R3

2 ) = AE1,R3

2 (prop.
2.1) holds;
(2.) at first we will show that E ∩ A1 = E1 is a stable extension of A1, i.e.
E1 ∈ Est(A1); conflict-freeness w.r.t. A1 follows from prop. 2.2; we only have
to show that for every a ∈ A1\E1 holds: (E1, {a}) ∈̄ R1; assume not, i.e.
∃a ∈ A1\(E ∩ A1) : (E ∩ A1, {a}) �̄∈ R1; consequently (E, {a}) �̄∈ R1 ∪ R2 ∪ R3

and this contradicts E ∈ Est(A);

with prop. 2.1 and 2.2 we get E ∩ A2 = E2 ∈ cf(modUE1
,R3

(AE1,R3

2 )); we now

show that E∩A2 attacks all outer arguments, i.e. for every a ∈ AE1,R3

2 \E2 holds:

(E2, {a}) ∈̄ RE1,R3

2 ; assuming the contrary, i.e. ∃a ∈ AE1,R3

2 \E2: (E2, {a}) �̄∈ RE1,R3

2

leads directly to (E, {a}) �̄∈ R1 ∪R2 ∪R3 which contradicts the fact that E is a
stable extension of A; (E, {a}) �̄∈ R3 because a ∈

{

a∗ ∈ A2

∣

∣ (E1, {a
∗}) �̄∈ R3

}

holds; furthermore (E, {a}) �̄∈ R2 because RE1,R3

2 ⊆ R2 holds and the remaining

attacks in R2 do not contain attacks from AE1,R3

2 to AE1,R3

2 ; the R1 - case is
obvious because a ∈ A2 holds
(admissible) (1.) admissible sets are conflict-free per definition, hence conflict-
freeness of E1 ∪ E2 in A is given by prop. 2.3;
we have to show that each element of E1∪E2 is defended by E1∪E2 in A, i.e. for
each a ∈ E1∪E2 holds: if (b, a) ∈ R1∪R2∪R3, then (E1∪E2, {b}) ∈̄ R1∪R2∪R3;
let a be an element of E1; if a is attacked by an element b, then b ∈ A1 and
(b, a) ∈ R1 holds, hence the admissibility of E1 in A1 guarentees the defence of a
by E1∪E2 in A; let a be an element of E2; we have to consider two cases, namely
b ∈ A1 and b ∈ A2; assuming b ∈ A1 yields (b, a) ∈ R3; we have already shown
the conflict-freeness of E1 ∪ E2, hence b has to be an element of A1\E1; again
two cases arise, either b ∈ UE1

or b /∈ UE1
; the first case is not possible because

elements which are attacked by undefined arguments w.r.t. E1 get additional
self-attacks in the modification, hence these elements can not be in the conflict-
free extension E2; the second case, namely b /∈ UE1

(and b /∈ E1) can be true but
if a is attacked by b, than (E1, {b}) ∈̄ R1 holds per definition of the undefined
arguments w.r.t. E1; consider now b ∈ A2 and (b, a) ∈ R2; we have to distinguish

two cases, namely b ∈ AE1,R3

2 or b /∈ AE1,R3

2 ; the counterattack of b by E1∪E2 in

the first case is assured because E2 defends its elements in modUE1
,R3

(AE1,R3

2 ),

hence E2 defends its elements in AE1,R3

2 (the deleted self-attacks do not change
the defense-state of elements in E2); that means there is only one case left,

namely (b, a) ∈ R2 and b /∈ AE1,R3

2 , i.e. b ∈ {a ∈ A2 |(E1, {a}) ∈̄ R3 }; hence b is
counterattacked by E1 which completes the proof that a is defended by E1 ∪E2

in A;
(2.) using that admissible semantics satisfying directionality we conclude imme-
diately E∩A1 = E1 is an admissible extension of A1, i.e. E1 ∈ Ead(A1) (compare
theorem 1.3);



now we want to show that E∩A2 = E2 ∈ Ead(modUE1
,R3

(AE1,R3

2 )) holds; at first

we note that E2 is indeed a subset of AE1,R3

2 (compare prop. 2.2); we now show

the conflict-freeness of E2 w.r.t. modUE1
,R3

(AE1,R3

2 ), i.e. (E2, E2) �̄∈ RE1,R3

2 ∪

{(b, b) | a ∈ UE1
, (a, b) ∈ R3}; again prop. 2.2 justifies (E2, E2) �̄∈ RE1,R3

2 ;
(E2, E2) �̄∈ {(b, b) | a ∈ UE1

, (a, b) ∈ R3} holds because if there is a b in E2

which get a self-attack by the modification, than b has to be attacked by an un-
defined element a ∈ UE1

; but this means that E does not defend its elements in
A because a is per definition unattacked by E1; at last we want to show that E2

defends all its elements in modUE1
,R3

(AE1,R3

2 ); assume a ∈ E2 ∧ b ∈ AE1,R3

2 =

{b ∈ A2 | (E1, {b}) �̄∈ R3} ∧ (b, a) ∈ RE1,R3

2 ∪ {(b, b) | a ∈ UE1
, (a, b) ∈ R3};

we observe that a 6= b holds, because i) E is conflict-free and RE1,R3

2 ⊆ R2

holds and ii) the additional self-attacks of the modification do not involve el-
ements of E2 because assuming this contradicts again the fact that E defends
all its elements in A; thus (b, a) ∈ RE1,R3

2 ⊆ R2 holds, consequently there is a

c ∈ E : (c, b) ∈ R1 ∪ R2 ∪ R3; it holds that c /∈ E ∩ A1 because of b ∈ AE1,R3

2 ,

hence c ∈ E∩A2∧(c, b) ∈ R2 holds; this implies (c, b) ∈ RE1,R3

2 which completes
the proof
(preferred) (1.) we have to show that E1 ∪E2 ∈ Epr(A), i.e. E1 ∪E2 is admis-
sible (already shown since each preferred extension is admissible) and maximal
w.r.t. the set inclusion; assume not, hence there is a E∗ ∈ Ead(A) : E1∪E2 ⊂ E∗;
thus at least one of the following two cases is true: E1 ⊂ E∗∩A1 or E2 ⊂ E∗∩A2;
assuming the first one contradicts the maximality of E1 because E∗ ∩ A1 is an
admissible extension of A1; we observe that E∗ ∩ A1 = E1 holds; consider now
E2 ⊂ E∗ ∩A2; using the second part of the splitting theorem for admissible sets
yields E∗ ∩ A2 ∈ Ead(modUE1

,R3
(AE1,R3

2 )) which contradicts the maximality of
E2; hence, we have proven that E1 ∪ E2 ∈ Epr(A) holds;
(2.) let E be an preferred extension of A; using that the preferred semantics sat-
isfies directionality we conclude E∩A1 ∈ Epr(A1) (theorem 1.3); admissibility of

E ∩A2 w.r.t. modUE∩A1
,R3

(AE∩A1,R3

2 ) is obvious since every preferred extension
is admissible (theorem 2.2 [admissible case]); assume now the existence of an

E∗
2 ∈ Ead(modUE∩A1

,R3
(AE∩A1,R3

2 )) : E ∩A2 ⊂ E∗
2 ; thus (E ∩A1)∪E∗

2 is admis-
sible w.r.t. A (theorem 2.1 [admissible case]) which contradicts the maximality
of E and we are done
(complete) (1.) we have to show that E1 ∪ E2 ∈ Eco(A), i.e. E1 ∪ E2 is ad-
missible (already shown since every complete extension is admissible) and for
each a ∈ A1 ∪ A2 which is defended by E1 ∪ E2 in A holds: a ∈ E1 ∪ E2;
assume not, hence ∃a ∈ (A1 ∪ A2)\(E1 ∪ E2) : a is defended by E1 ∪ E2 in
A; assuming that a ∈ A1\(E1 ∪ E2) holds contradicts E1 ∈ Eco(A1); so let

a ∈ A2\(E1 ∪ E2) be true; at first we observe that a ∈ AE1,R3

2 holds because of
the conflict-freeness of E1 w.r.t. A1; we have to consider two attack-scenarios:
a) a is attacked by arguments in A2\A

E1,R3

2 (and obviously defended by E1

in A); the reduct-relation do not contain such attacks, hence every “attack” is

counterattacked by E2 in modUE1
,R3

(AE1,R3

2 ); b) a is attacked by arguments in

AE1,R3

2 \E2; hence it must be defended by elements of E2 in AE1,R3

2 , thus de-



fended by E2 in modUE1
,R3

(AE1,R3

2 ) because the corresponding attack-relation
do not delete such counterattacks; altogether we have shown that a ∈ E2 holds,
hence E1 ∪ E2 ∈ Eco(A) is proven;
(2.) assume E ∈ Eco(A); using that the complete semantics satisfies directional-
ity we conclude E ∩ A1 ∈ Eco(A1) (theorem 1.3); admissibility of E ∩ A2 w.r.t.

modUE∩A1
,R3

(AE∩A1,R3

2 )) holds since complete extensions are admissible (theo-

rem 2.2 [admissible case]); supposing ∃a ∈ AE∩A1,R3

2 \E ∩ A2: a is defended by

E ∩ A2 in modUE∩A1
,R3

(AE∩A1,R3

2 ) contradicts the completeness of E in A be-

cause possible attackers of a are elements of AE∩A1,R3

2 which are counterattacked
by E ∩ A2; these counterattacks are not added by the modification, hence a is
defended by E ∩A2 in AE∩A1,R3

2 ; furthermore a is defended by E in A (further
attackers are counterattacked by E ∩ A1) and again we conclude E /∈ Eco(A)
(grounded) (1.) we have to show that E1 ∪E2 ∈ Egr(A), i.e. E1 ∪E2 is a com-
plete extension of A (already shown since each grounded extensions is complete)
and furthermore it is minimal w.r.t. the set inclusion; assume not, hence there
is a set E∗ ∈ Eco(A): E∗ ⊂ E1 ∪ E2; we will show that the following two cases
are impossible: i) E∗ ∩ A1 ⊂ E1 or ii) E∗ ∩ A2 ⊂ E2; the first case contradict
directly the minimality of E1 w.r.t. A1; we observe that E∗ ∩ A1 = E1 holds,
hence E∗ ∩ A2 is a complete extension of modUE1

,R3
(AE1,R3

2 ) which contradicts
the minimality of E2;
(2.) let E be a grounded extension of A; using that the grounded semantics sat-
isfies the directionality principle we deduce directly E ∩A1 ∈ Egr(A1) (theorem

1.3); assume now the existence of E∗
2 ∈ Eco(modUE∩A1

,R3
(AE∩A1,R3

2 )) : E∗
2 ⊂

E ∩A2, thus E∗
2 ∪ (E ∩A1) is a complete extension of A and of course a proper

subset of E (which contradicts the minimality of E) 2

The splitting theorem obviously strengthens the outcome of the monotonicity
result for the admissible, preferred, grounded and complete semantics which all
satisfy the directionality principle. We do not only know that an old belief set
is contained in a new one and furthermore every new belief set is the union of
an old one and a (possibly empty) set of new arguments but rather that every
new belief set is the union of an old one and an extension of the corresponding
modified reduct and vice versa. The cardinality inequality of the monotonicity
result (theorem 1.1) can be strengthened in the following way.

Corollary 1. Let (A1,A2, R3) be a splitting of the argumentation framework
A∗ = (A1 ∪ A2, R1 ∪ R2 ∪ R3) and σ ∈ {ad, pr, co, gr}. The following inequality
holds:

|Eσ(A)| ≤
∑

Ei∈Eσ(A)

∣

∣

∣
Eσ

(

modUEi
,R3

(AEi,R3

2 )
)
∣

∣

∣
= |Eσ(A∗)| .

5 Dynamical Argumentation

5.1 Computing Extensions

Since argumentation is a dynamic process, it is natural to investigate dynamic
behavior in this context. Obviously the set of extensions of an AF may change



if new arguments and their corresponding interactions are added. Computing
the justification state of an argument from scratch each time new information is
added is very inefficient. Note that in general, new arguments occur as a response,
i.e., an attack, to a former argument. In this situation the former extensions are
not reusable because in [6] we have shown a possibility result concerning the
problem of enforcing of extensions which proves that every conflict-free subset
of former arguments may belong to a new extension.

The splitting results allow us to reuse already computed extensions in case
of weak expansions. Being aware of the remark above, we emphasize that weak
expansions are not only a theoretical situation in argumentation theory. The ini-
tial arguments may be arguments which advance higher values4 than the further
arguments. The following dynamical argumentation scenario exemplifies how to
use our splitting results.

Example 3. Given an AF A = ({a1, ..., an}, R) and its set of extensions Eσ(A) =
{E1, ..., Em} (σ ∈ {pr, co, gr}). Consider now additional new arguments a∗

1 and
a∗
2, where a∗

1 is attacked by the old arguments a1 and a2. Furthermore a∗
2 is

defeated by a∗
1.

a∗
1a∗

2 a1

a2

a3

an

What are the extensions of the expanded AF A∗ = (A ∪ {a∗
1, a

∗
2},

R∪{(a1, a
∗
1), (a2, a

∗
1), (a

∗
1, a

∗
2)})? Since A∗ is a weak expansion of A we may apply

the splitting theorem. Given an extension Ei we construct the (UEi
, {(a1, a

∗
1)(a2, a

∗
1)})-

modification of ({a∗
1, a

∗
2}, {(a

∗
1, a

∗
2)})

Ei,{(a1,a∗

1
)(a2,a∗

1
)}. The following three cases

arise: (1) a1 or a2 is an element of Ei, (2) a1 and a2 are not in Ei and not in
UEi

, and (3) a1 and a2 are not in Ei and at least one of them is in UEi
.

The AFs below are the resulting modifications in these three cases. In the
first case the argument a∗

1 disappears because a∗
1 is attacked by an element of the

extension Ei (reduct-definition). In the second and third case the arguments a∗
1

and a∗
2 survive because they are not attacked by Ei. Furthermore in the last case

we have to add a selfloop for a∗
1 since a1 or a2 are undefined (= not attacked)

w.r.t. Ei.

a∗
2 a∗

2 a∗
1 a∗

2 a∗
1

The resulting preferred, complete and grounded extensions of the modifica-
tions are easily determinable, namely {a∗

2} in the first case, {a∗
1} in the second

4 Compare the idea of “attack-succeed” in Value Based Argumentation Frameworks
[8].



and the empty set in the last case. Now we can construct extensions of the
expanded AF A∗ by using the already computed extensions of A, namely (1)
Ei ∪ {a∗

2} ∈ Eσ(A∗), (2) Ei ∪ {a∗
1} ∈ Eσ(A∗), and (3) Ei ∈ Eσ(A∗). Due to the

completeness of the splitting method we constructed all extensions of A∗.
We want to remark that the splitting results also provide a new possibility

to compute extensions in a static AF. This work is still in progress and is not
part of this paper.

5.2 Terms of Equivalence

Oikarinen and Woltran [9] extended the notion of equivalence between two AFs
(which holds, if they possess the same extensions) to strong equivalence. Strong
equivalence between to AFs F and G is fullfilled if for all AFs H holds that
F conjoined with H and G conjoined with H are equivalent. Furthermore they
establish criteria to decide strong equivalence. These characterizations are based
on syntactical equality of so-called kernels.

The following definition weakens the strong equivalence notion w.r.t. weak
expanions. We will present a characterization for stable semantics.5

Definition 9. Two AFs F and G are weak expansion equivalent to each other
w.r.t. a semantics σ, in symbols F ≡σ

≺N
W

G, iff for each AF H s.t.

• F = F ∪H or F ≺N
W F ∪H and

• G = G ∪ H or G ≺N
W G ∪ H,

Eσ(F ∪H) = Eσ(G ∪ H) holds.

Proposition 3. For any AFs F = (AF , RF ) and G = (AG, RG): F ≡st
≺N

W

G iff

• AF = AG and Est(F) = Est(G) or
• Est(F) = Est(G) = ∅.

Proof. (⇐) let H = (AH , RH) be an AF s.t. F ≺N
W (or =) F ∪H and G ≺N

W

(or =) G ∪ H holds; we show E ∈ Est(F ∪H) implies E ∈ Est(G ∪ H); 1st case:
assume AF = AG and Est(F) = Est(G); if F = F ∪H, then G = G ∪ H is im-
plied because AF = AG was assumed; that means, Est(F ∪H) = Est(G ∪ H)
holds; from now on we may assume that F ∪H and G ∪ H are indeed weak ex-
pansions of F or G; by prop. 1 we get that (F ,A2, R3) and (G,A2, R3) are split-
tings of F ∪H or G ∪ H, whereas A2 = (AH\AF , RH ∩ (AH\AF × AH\AF ))
and R3 = RH ∩ (AF × AH\AF ); given E ∈ Est(F ∪H), theorem 2.2 implies

1. E ∩ AF ∈ Est(F) and 2. E ∩ (AH\AF ) ∈ Est

(

modUE∩AF
,R3

(AE∩AF ,R3

2 )
)

;

the first statement implies E ∩ AG ∈ Est(G) since AF = AG and Est(F) =

Est(G) was asssumed; with prop. 2.1 we derive E ∩ (AH\AF ) ∈ Est

(

AE∩AF ,R3

2

)

since E ∩ AF is a stable extension of F ; using that AF equals AG we get

5 The remaining semantics are left for future work.



E∩(AH\AG) ∈ Est

(

AE∩AG,R3

2

)

; again with prop. 2.1 we follow E∩(AH\AG) ∈

Est

(

modUE∩AG
,R3

(AE∩AG,R3

2 )
)

because E ∩ AG ∈ Est(G) is already shown; fi-

nally, theorem 2.1 justifies (E ∩ AG) ∪ (E ∩ (AH\AG)) = E ∈ Est (F ∪H); the
other way around (E ∈ Est(G ∪ H) implies E ∈ Est(F ∪H)) is similar; 2nd case:
suppose Est(F) = Est(G) = ∅; then, Est(F ∪H) = Est(G ∪ H) = ∅ holds because
assuming E ∈ Est(F ∪H) yields to E ∩ AF ∈ Est(F) (splitting theorem 2.1)
which contradicts Est(F) = ∅; hence, E ∈ Est(F ∪H) implies E ∈ Est(G ∪ H)
(as well as the converse direction)
(⇒) we will show the contrapositive that is: (Est(F) 6= Est(G) ∨ AF 6= AG) ∧
(Est(F) 6= Est(G) ∨ Est(G) 6= ∅) implies the existence of an AF H, s.t. Est(F ∪H) 6=
Est(G ∪ H) holds; 1. given Est(F) 6= Est(G), then w.l.o.g. we may assume the ex-
istence of an E : E ∈ Est(F) ∧ E /∈ Est(G); consider now H = ({a}, ∅) whereas
{a} ∩ (AF ∪ AG) = ∅ holds; we immediately derive that E ∪ {a} is a stable
extension of F ∪H; furthermore it is impossible that E ∪ {a} ∈ Est(G ∪ H)
holds since E /∈ Est(G) was assumed (splitting theorem 2.2); 2. assume now
Est(F) = Est(G) ∧ Est(G) 6= ∅ ∧ AF 6= AG; w.l.o.g. let a be an argument, s.t.
a ∈ AF \AG holds; we observe for all stable extensions E of F and G, a /∈ E;
since Est(G) 6= ∅ was supposed we may assume E ∈ Est(G); define H = ({a}, ∅),
hence E′ = E ∪ {a} ∈ Est(G ∪ H) (splitting theorem 2.1); on the other hand
E′ /∈ Est(F ∪H) since F = F ∪H and a ∈ E′ holds 2

It obviously holds that strong equivalence between two AFs F and G implies
their weak expansion equivalence. The following example demonstrates that the
converse does not hold.

Example 4. Given F = ({a1, a2, a3}, {(a1, a2), (a1, a3)}),
G = ({a1, a2, a3}, {(a1, a2), (a1, a3), (a2, a3)}) and H = ({a1, a2}, {(a2, a1)}).

a3 a2 a1a3 a2 a1

Obviously we have F ≡st
≺N

W

G since AF = AG and Est(F) = Est(G) = {a1} holds.

On the other hand we have Est(F ∪ H) = {{a1}, {a2, a3}} and Est(G ∪ H) =
{{a1}, {a2}}. Hence they are not strong equivalent.

6 Related Work and Conclusions

In this paper, we provided splitting results for Dung-style AFs under the most
important semantics, namely stable, preferred, complete and grounded seman-
tics. In a nutshell, the results show that each extension E of a splitted argumen-
tation framework A = (A1,A2, R3) is equal to the union of an extension E1 of
A1 and an extension E2 of a modification (w.r.t. E1 and R3) of A2.

In [10] Baroni et al. introduced a general recursive schema for argumentation
semantics. Furthermore they have shown that all admissibility-based semantics



are covered by this definition. The great benefit of this approach is that the
extensions of an AF A can be incrementally constructed by the extensions along
its strongly connected components.

A directed graph is strongly connected if there is a path from each vertex
to every other vertex. The SCCs of a graph are its maximal strongly connected
subgraphs. Contracting every SCC to a single vertex leads to an acyclic graph.
Hence every SCC-decomposition can be easily transformed into a splitting6.
Conversely, a given splitting (A1,A2, R3) simplifies the computation of SCCs
because every SSC is either in A1 or A2. In this sense our results are certainly
related to the SCC-approach. However, there are some important differences at
various levels:

1. there is a subtle, yet relevant difference on the technical level: whereas the
approach of Baroni et al. is based on a generalized theory of abstract argu-
mentation (see subsection 5.1 in [10]), we stick to Dung’s original approach
and use an adequate modification in addition to the reduct to establish our
results;

2. we provide theoretical insights about the relationship of the extensions of an
arbitrary splitted AF; the parts into which an AF is split may be, but do
not necessarily have to be SCCs;

3. whereas a major motivation in [10] was the identification of new semantics
satisfying SCC-recursiveness, our primary intent is to carry over our results
to dynamical argumentation like new terms of equivalence.

In section 4 we illustrated how to carry over our splitting results to dynamical
argumentation. A number of papers appeared in this field of research. However,
the possibility of reusing extensions has not received that much attention yet.
A mentionable work in this context is [4]. Cayrol et al. proposed a typology of
revisions (one new argument, one new interaction). Furthermore they proved
sufficient conditions for being a certain revision type.

In future work we would like to study in detail the mentioned terms of equiva-
lence between two AFs A and B, i.e. what are sufficient and necessary conditions
for their weak (strong, normal) expansion equivalence w.r.t. a semantics σ.
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