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Abstract. Reasoning about actions is a sub�eld of arti�cial intelligence
that is concerned with representing and reasoning about dynamic do-
mains. We propose to employ abstract argumentation for this purpose.
Speci�cally, we present a translation of action domains from a speci�ca-
tion language into Dung-style argumentation frameworks (AFs). As the
key advantage of our approach, we use existing semantics for argumen-
tation to make predictions about the domain in various manners and
utilise existing results about argumentation to show that the approach
can be e�ciently implemented. This demonstrates the practical value
not only of its theoretical results, but also abstract argumentation itself.
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1. Introduction

In the past decade, approaches to abstract argumentation, in particular Dung-
style AFs [5], have received considerable attention from the arti�cial intelligence
community. More or less two directions in this research area were investigated ex-
haustively: �rst, exploration of theoretical properties of argumentation semantics
as well as advancements of them which satisfy certain desired features; and sec-
ond, extending and/or revising former argumentation systems to handle prefer-
ences or values for example. Alas, actual applications for abstract argumentation
regarding real-world problems are very rare (see [12] for an excellent summary).

In this paper, we take a �rst step into this direction and propose to employ
Dung-style AFs for reasoning about actions. The ability to make predictions about
how a dynamically changing domain will evolve is of vital importance to intelligent
systems, be they embodied or software-based. We show that argumentation can
be elegantly used to ful�l this task. Our work rests on various theoretical results
about argumentation that have been obtained in the last years and thus shows
that these results are not only of academic interest but also practical value.

Speci�cally our contributions in this paper are as follows. We present the �
to the best of our knowledge � �rst approach using abstract argumentation to
reason about actions that is independent of a speci�c time structure and can also
do default reasoning in dynamic domains.1 We generalise the concept of weak
expansions [2] to the in�nite case, leading to a concept of strati�cation for argu-
mentation frameworks that is much like the one for logic programs. Strati�cation
enables us to demonstrate that our approach is e�ciently implementable. Fur-
thermore, we show how di�erent argumentation semantics can be used for di�er-
ent types of reasoning (well-founded v. hypothetical) and knowledge (complete v.
incomplete) � notably with one and the same encoding. That way, we can emulate
conceptually di�erent action languages within a single uniform framework.

1Michael and Kakas [?] proposed an argumentation-based approach to combine reasoning
about actions with default reasoning. They however use a speci�c form of assumption-based
argumentation, while in this paper we use standard abstract argumentation.



The paper is organised as follows. In the next section, we provide the necessary
formal background on argumentation and a gentle introduction to action theories.
The section thereafter formalises how we specify dynamic domains and translate
them into abstract argumentation frameworks. Finally, we prove several bene�cial
properties of the resulting frameworks, discuss related work and conclude.

2. Background

2.1. Argumentation Theory

An argumentation framework F is a pair (A,R), where A is a non-empty (possibly
in�nite) set whose elements are called arguments and R ⊆ A×A a binary relation,
called the attack relation. If (a, b) ∈ R holds we say that a attacks b, or b is
defeated by a in F . We will slightly abuse notations, and write (A, b) ∈ R for
∃a ∈ A : (a, b) ∈ R; likewise we use (b, A) ∈ R and (A,A′) ∈ R. An AF is
called �nitary if all arguments have a �nite number of defeaters. An argument
a ∈ A is defended by a set A′ ⊆ A in F if for each b ∈ A with (b, a) ∈ R,
(A′, b) ∈ R. Furthermore, we say that a set A′ ⊆ A is con�ict-free in F if there
are no arguments a, b ∈ A′ such that a attacks b. The set of all con�ict-free sets
of an AF F is denoted by cf(F). For an AF F = (B,S) we use A(F) to refer to
B and R(F) to refer to S.

Extension-based semantics Semantics determine acceptable sets of arguments for
a given AF F , so-called extensions. The set of all extensions of F under semantics
σ is denoted by Eσ(F). For two semantics σ, τ we use σ ⊆ τ to indicate that for
any F ∈ A , Eσ(F) ⊆ Eτ (F). We consider here σ ∈ {st, ad, pr, co, gr} for stable,
admissible, preferred, complete and grounded semantics [5].

De�nition 1. Given an AF F = (A,R) and E ⊆ A. Then,

1. E ∈ Est(F) i� E ∈ cf(F) and for each a ∈ A\E, (E, a) ∈ R,
2. E ∈ Ead(F) i� E ∈ cf(F) and each e ∈ E is defended by E in F ,
3. E ∈ Epr(F) i� E ∈ Ead(F) and for no E′ ∈ Ead(F), E ( E′,
4. E ∈ Eco(F) i� E ∈ Ead(F) and for each a ∈ A defended by E in A, a ∈ E,
5. E ∈ Egr(F) i� E ∈ Eco(F) and for no E′ ∈ Eco(F), E′ ( E.

There are several relations between these semantics: st ⊆ pr ⊆ co, gr ⊆ co
and the unique grounded extension is contained in every complete extension.
Furthermore, each AF has a grounded and at least one preferred and complete
extension. Given a �nitary AF F the grounded extension of F can be obtained
by iteratively applying its characteristic function CF on the empty set. For any
set S ⊆ A(F), CF (S) = {a | a is defended by S in F}, thus CF is monotonic.

Weak expansions and chains We recapitulate several de�nitions �rstly intro-
duced by [2]. The lemma at the end of this section will play a crucial role for
the evaluation of a given action domain. For short, weak expansions add new
arguments and possibly new attacks, but no attacks between previous arguments;
additionally, the added arguments never attack former ones.

De�nition 2. An AF F∗ is a weak expansion of AF F = (A,R) � written as
F ≺NW F∗ � i� F∗ has a representation as (A ∪ A∗, R ∪ R∗), such that A∗ 6= ∅,
A∗ ∩A = R∗ ∩R = ∅ and ∀a, b ∈ A ((a, b) ∈ R∗ → ¬(a ∈ A∗ ∧ b ∈ A)).



De�nition 3. Let C = 〈F1,F2, . . . ,Fn〉 be a sequence of AFs and F an AF. C is
a weak expansion chain of F i� F = Fn and Fi ≺NW Fi+1 for all 1 ≤ i ≤ n− 1.

The following lemma states that under certain conditions detecting whether
an argument is accepted can be considerably simpli�ed.

Lemma 1 (Corollary 7,[2]). Let 〈F1,F2, . . . ,Fn〉 be a weak expansion chain of
F and let i the smallest index with a ∈ A(Fi). For any semantics satisfying di-
rectionality, a is in some/all extensions of F i� a is in some/all extensions of Fi.

2.2. Action Theories

Action theories are used to represent agents' knowledge about dynamic domains.
Envisioned by pioneer John McCarthy as early as 1959 [8], one of their tasks is to
predict how the world will evolve over time. Such predictions are highly relevant
in arti�cial intelligence, for example to enable an agent to plan ahead the course
of actions suitable to meet its goals. A major representational and inferential
problem any action theory must solve is the so-called frame problem of specifying
the world properties that do not change when an action is performed [?]. Having
been discovered in 1969, it took until 1991 that the frame problem was solved
in a generally accepted way [13]. Today, the �eld of reasoning about actions and
change has brought forth quite a number of logic-based formalisms, each with
their own solution to the frame problem [14].

Empowered by these advances in classical action theories, researchers began
to recognise that agents typically have only incomplete knowledge about their
environment, and started to address this issue. Mueller [10] described a general
method for default reasoning about (linear) time based on the circumscription of
abnormality predicates. Kakas et al. [?] sketched an integration of temporal and
default reasoning and in subsequent works developed an argumentation-based se-
mantics for the approach using linear time [?,9]. Lakemeyer and Levesque [?] gave
a de�nition of progression [13] in the presence of state defaults for a modal frag-
ment of the Situation Calculus that uses branching time. Baumann et al. [3] ap-
proached the state default problem of inferring what usually holds in an abstract
formalism that is independent of a particular time structure [14].

In parallel to the development of the highly expressive, logic-based formalisms
for reasoning about changing worlds, researchers have proposed so-called action
languages [6] for describing domains. They are simpler, much closer to natural
language and usually have a semantics based on state transition systems. The
approach presented in this paper is in e�ect also based on this paradigm since we
de�ne an action language with argumentation-based semantics.

3. Using Argumentation Frameworks to Reason about Actions

This section describes our approach for reasoning about actions and change via
abstract argumentation. Roughly, the approach works as follows. The user speci-
�es an action domain in an action language that we de�ne next. Our de�nitions
construct an argumentation framework from a description of a domain in this
action language. The obtained argumentation framework can be used to answer
queries about the domain using various semantics.



3.1. Specifying Action Domains

The vocabulary for speaking about dynamic domains consists of three compo-
nents. First �uents, properties that may change over time. Second actions (also
called events), that happen and initiate those changes. Third a time structure,
that speci�es the time points at which we are interested in the state of the world
and how these time points relate to each other. The �rst two can be viewed as
constant symbols, the third element is given by a directed tree whose nodes are
time points and whose edges induce a reachability relation among the time points.

De�nition 4. A domain vocabulary is a tuple (F,A,T,≺), where

• F is a set of �uents. A �uent literal is of the form f or ¬f for some
f ∈ F. De�ne f def= ¬f and ¬f def= f , and for a set L of �uent literals set
L def=

{
l
∣∣ l ∈ L}. The set of all �uent literals is then F± def= F ∪ F.

• A is a set of actions.
• The pair (T,≺) is a time structure, a directed graph with the properties

∗ T is a countable set of time points, each with a �nite degree,
∗ 0 ∈ T is the root of the tree (called the least time point),
∗ for any t ∈ T there is a unique �nite, directed path from 0 to t.

The intuition behind trees as time structures is that edges lead to direct suc-
cessor time points and the direction of the edges express the �ow of time. Hence
our time structures may be branching into the future, but they are always linear
with respect to the past. This is a very abstract view of time that can accom-
modate di�erent notions of time that are used in the literature: For example,
the pair (N, {(n, n+ 1) | n ∈ N}) of the natural numbers with the usual succes-
sor relation de�nes a discrete linear time structure [10]. The second major time
structure used in the reasoning about actions community, the branching time of
situations [13], can be modelled using terms. There, a special constant 0 denotes
the initial situation and new situations are inductively de�ned from actions a and
given situations s by the terms do(a, s) denoting the result of executing a at s.

The state of the world at a time point of any time structure is described by
providing the truth values of the relevant aspects of the environment represented
by �uents. Since some world aspects might be unknown, we allow the represen-
tation of incomplete knowledge about a time point.

Actions are formalised by stating their action preconditions � world properties
that must hold in order for the action to be executable � and direct e�ects, that
express how actions change the state of the world. Since world states are modelled
using �uents, the changes initiated by actions are modelled by �uent literals that
become true whenever certain �uent literals � the e�ect preconditions � hold.
Finally, to formalise how the world normally behaves we use defaults � which say
that a �uent literal normally holds whenever all literals in a set of prerequisites
hold. Several action languages o�er additional expressiveness, for example indirect
action e�ects. We however want to keep it simple here since our main goal is to
show how abstract argumentation can be used to reason about dynamic domains.

A speci�cation of an action domain in our action language consists of two
parts: the �rst part contains such general knowledge about the domain � action



preconditions, action e�ects, state defaults �, the second part contains information
about what holds and happens at various time points of a speci�c domain instance.
We begin with how to express knowledge about the general workings of a domain.

De�nition 5. Consider a �xed domain vocabulary (F,A,T,≺), and let a ∈ A be
an action, l ∈ F± be a �uent literal and C ⊆ F± be a �nite set of �uent literals.
A statement can be:

• a precondition statement : possible a if C
• a direct e�ect statement : action a causes l if C
• a default statement : normally l if C

In statements of the above form, we will refer to literal l as the consequent.
If C = ∅ for a statement, we omit the if part in writing. For illustration, we use
the following running example throughout the paper.

Example 1 (Machine supervision). In this simpli�ed domain, the agent's task is to
supervise the operation of a machine. If the temperature of the machine becomes
too high, it has to be shut down. Normally, however, the machine operates within
temperature. To make statements about this domain, we use the set of �uents F =
{On,Cool} to express that the machine is on and within acceptable temperature,
and the set of actions A = {Switch} for toggling the machine's power button.

How �uents and actions interrelate is now given through the following state-
ments. When switching the machine on/o�, the status of �uent On �ips �
action Switch causes On if {¬On}, action Switch causes ¬On if {On} �
and turning it o� furthermore causes the machine to cool down, formalised as
action Switch causes Cool if {On}. The usual state of a�airs in normal opera-
tion mode is expressed by the default statement normally Cool if {On}.

For a speci�c domain instance, we will also assume given a narrative consisting
of observations of the status of �uents and occurrences of actions at various time
points. Although we introduce a more general notation, in this paper, we restrict
our attention to actions that end in the direct successor time point.

De�nition 6. For a �xed domain vocabulary (F,A,T,≺), let a ∈ A be an action,
l ∈ F± a �uent literal and s, t ∈ T time points with s ≺ t. An axiom can be:

• an observation axiom: observed l at t
• an occurrence axiom: happens a from s to t

So when we use the linear time structure shown earlier, action occurrences
are always of the form happens a from n to n+ 1 for some n ∈ N, which means
that a has a �xed duration of one time-step. However, we allow the possibility of
concurrency, that is, multiple actions happening at the same time.

The combination of general information about the domain and information
about a speci�c instance is now called an action domain speci�cation.

De�nition 7. An action domain speci�cation, or domain for short, is a set
Σ = Υ ∪ Ω where Υ is a �nite set of statements and Ω is a set of axioms.



Example 2 (Continued). We extend the partial domain signature of the machine
supervision domain by the time structure (T,≺) where T = {0, 1, 2, 3} and ≺ is
given by {(0, 1), (1, 2), (2, 3)}. (Note that in this case 0 = 0.) Now we can express
a narrative where the machine is initially o�, then switched on at time point 1 and
nothing further happens: Ω = {observed ¬On at 0, happens Switch from 1 to 2}.

Whenever using situations as underlying time structure of a domain, we tac-
itly assume included the set {happens a from s to do(a, s) | a ∈ A, s ∈ T} of oc-
currence axioms (expressing the meaning of situations as hypothetical future time
points) and restrict the user speci�cation to observation axioms.

For any action domain speci�cation � be it linear-time or branching-time �
we now want to make predictions about how the domain will normally evolve over
time. We do this by translating the speci�cations into argumentation frameworks
and using argumentation semantics to reason about the domains.

3.2. From Action Domain Speci�cations to Abstract Argumentation Frameworks

In the previous section, we introduced the syntax of a language for describing
dynamic domains. Now we present the argumentation-based semantics for that
language. To this end, we de�ne a translation function from action domain spec-
i�cations into abstract argumentation frameworks.

This translation function will be mostly modular, which means that most of
the constituents of a domain description can be translated in isolation, that is,
without considering other parts of the domain. It is mostly modular because there
will be one exception for modularity: to correctly express the e�ects of actions,
we need access to e�ect statements when translating occurrence axioms.

The basic intuition underlying our translation is the following. Each piece of
knowledge about the domain is modelled as an argument [?,9]. The most impor-
tant arguments will express whether a �uent holds at a time point. There will be
other arguments, that state various causes for �uents to have a certain truth value.
For example, there will be arguments stating persistence as a reason for a �uent
being true or false, arguments about direct action e�ects, default conclusions and
lastly observations. To resolve con�icts between these causes � e.g. persistence
says a �uent should be false while a direct e�ect says it should be true � we use a
�xed natural priority ordering that prefers observations over action e�ects, which
are in turn preferred over defaults, that on their part trump persistence. This pri-
ority ordering is expressed in the de�ned framework via attacks, that (along with
the remaining attacks) encode the relation between di�erent pieces of knowledge
in the domain and eventually determine the semantics of the given speci�cation.

For the rest of this subsection, we assume a given action domain speci�cation
Σ over a domain vocabulary (F,A,T,≺). Although the translation can be de�ned
in a strictly formal way, we have chosen a less rigorous presentation that we hope
is much easier to read. In the paragraphs below, we de�ne arguments and attacks
that are created from elements of Σ. To express that argument a attacks argument
b, we will write a b. The resulting argumentation framework FΣ is understood
to contain all arguments and attacks that we de�ne below. Along the way, we
will illustrate most of the de�nitions with the relevant parts of the argumentation
framework of our running example domain.



Fluents and time points. First of all, we create arguments that express whether a
�uent is true or false at a time point, or alternatively whether a �uent literal holds
at a time point. For a �uent literal l ∈ F± and time point t ∈ T they are of the
form holds(l, t). Obviously, a �uent cannot be both true and false at any one time
point, so for all f ∈ F and t ∈ T, we create the attacks holds(f, t) holds(¬f, t)
and holds(¬f, t) holds(f, t).

Persistence. To solve the frame problem, we de�ne arguments frame(l, t1, t2)
for all l ∈ F± and t1 ≺ t2. These arguments say �the truth value of �uent lit-
eral l persists from time point t1 to its direct successor t2.� First, we express
that l holding at t1 is evidence against its negation l persisting from t1 to t2:
holds(l, t1) frame(l, t1, t2). Also, l persisting from t1 to t2 is evidence against it
being false at t2: frame(l, t1, t2) holds(l, t2).

Example 2 (Continued). The AF about �uent On and time points 0, 1 looks thus:

holds(On, 0)

holds(¬On, 0)

frame(¬On, 0, 1)

frame(On, 0, 1)

holds(On, 1)

holds(¬On, 1)

Defaults. Now we encode default conclusions: for normally l if C ∈ Σ and
t ∈ T we create arguments def (l, t) and def (l, t) with the intended meaning that l
normally holds (normally does not hold) at t. The argument for l being normally
true at t attacks the arguments for l being false or normally false at t: We add
def (l, t) holds(l, t) and def (l, t) def (l, t). A default is inapplicable if some
prerequisite c ∈ C is false at t, expressed by holds(c, t) def (l, t) for each c ∈ C.
Defaults generally override persistence, so a default normally l if C will attack
persistence of literal l to time point t. If there is a time point s ≺ t we add the
attack def (l, t) frame(l, s, t).

We also create special arguments that express whether the world is abnormal
with regard to a speci�c default, that is, whether the default was violated at the
time point. A state default normally l if C is violated whenever all literals in
C hold but l does not hold, which hints at an abnormality of the world. For a
default normally l if C ∈ Σ and time points s, t ∈ T with s ≺ t we create
the argument viol(l, s) and the attacks detailed below. First, we require that
abnormal situations do not go away by default, therefore a violated default blocks
its own application at the successor time point by the attack viol(l, s) def (l, t).
Conversely, a default is not violated at s i� one of: (1) it was applied, hence the
attack def (l, s) viol(l, s); (2) its consequent holds (the world is normal), thus
we add holds(l, s) viol(l, s); or (3) one of its prerequisites is false, hence we
include the attack holds(c, s) viol(l, s) for each c ∈ C.

Example 2 (Continued). Here is a part of the argumentation (sub-)framework ex-
pressing that the machine is usually cool when on. (The lower part about persis-
tence of Cool is isomorphic to the above graph for persistence of On.) Below we can
see that holds(¬On, 0) defends def (Cool, 1), which in turn defends holds(Cool, 1).



holds(¬On, 0) viol(Cool, 0) def (Cool, 1)

holds(Cool, 0)

holds(¬Cool, 0)

frame(¬Cool, 0, 1)

frame(Cool, 0, 1)

holds(Cool, 1)

holds(¬Cool, 1)

Action e�ects. Now for modelling the direct e�ects of actions. Let action occur-
rence happens a from s to t ∈ Σ and e�ect statement action a causes l if C ∈ Σ.
We devise an argument dir(l, a, s, t) that encodes occurrence of e�ect l through a
from s to t. First, the action e�ect l can never materialise if some precondition in C
is false: we add holds(c, s) dir(l, a, s, t) for all c ∈ C. If there is a precondition
statement possible a if Ca ∈ Σ, we add the attacksholds(c, s) dir(l, a, s, t)
for all c ∈ Ca. As usual, to derive e�ect l at t we attack its negation l at t,
dir(l, a, s, t) holds(l, t). Since e�ects override both defaults and persistence, a
direct e�ect l also attacks persistence of and default conclusions about its nega-
tion l, as well as possible con�icting e�ects. We add dir(l, a, s, t) frame(l, s, t),
dir(l, a, s, t) def (l, t) and �nally dir(l, a, s, t) dir(l, a′, s, t) for all a′ ∈ A.

Example 2 (Continued). If the machine was turned o�, it would cool down.

holds(¬On, 1)

holds(On, 1)

dir(Cool, Switch, 1, 2)

frame(¬Cool, 1, 2)

holds(¬Cool, 2)

holds(Cool, 2)

Observations. For observations observed l at t ∈ Σ we create arguments obs(l, t)
and obs(l, t) saying that l (resp. l) has been observed. Observations are the
uber-causes and attack all other causes, including observations to the contrary:
obs(l, t) holds(l, t), obs(l, t) frame(l, s, t) for s ≺ t, obs(l, t) def (l, t),
obs(l, t) dir(l, a, s′, t) for s′ ≺ t and all a ∈ A, �nally obs(l, t) obs(l, t).

Example 2 (Continued). Initially, the machine is observed to be o�.

obs(¬On, 0) holds(On, 0) holds(¬On, 0)

This concludes our de�nition of the argumentation framework FΣ associated
with an action domain speci�cation Σ.

Example 2 (Continued). The full argumentation framework FΣ constructed from
the machine supervision domain is too large to show here, we can however have
a look at its extensions and what they predict about the domain. The grounded
extension of FΣ is given by

obs(¬On, 0) holds(¬On, 0)
frame(¬On, 0, 1) holds(¬On, 1)
dir(On, Switch, 1, 2) holds(On, 2) def (Cool, 2) holds(Cool, 2)

frame(On, 2, 3) holds(On, 3) frame(Cool, 2, 3) holds(Cool, 3)



In words, the observation that the machine is o� lets us conclude it is indeed
o�; this persists to time point 1. Then the machine is switched on, �uent On

becomes true and persists that way. Meanwhile, there is no information about the
temperature of the machine; however, after it is switched on, the default can be
applied and the machine is henceforth assumed to be cool.

There are two stable extensions, which contain everything that is grounded
and additionally make a commitment toward the initial status of Cool, where the
�rst one contains holds(Cool, 0) and the second one holds(¬Cool, 0). There are
three complete extensions, the grounded one and the two stable extensions.

4. Properties of the Constructed Framework

The example framework just seen illustrated the workings of our approach, yet al-
lows no general conclusions about bene�ciary properties of the constructed frame-
works. We will now proceed to prove several nice properties that are highly rel-
evant for knowledge representation and ultimately pave the way for an e�cient
implementation of our approach.

We start with some general observations. First, the AFs we construct in Sec-
tion 3.2 are always �nitary, although they may of course be in�nite due to an
in�nite set of time points. Second, it follows from the de�nition that the argumen-
tation frameworks are free of self-loops. According to results about strong equiv-
alence [11], this means that all attacks encoded therein are actually meaningful.
In the remainder, we explore some more properties in greater detail.

4.1. Encoded Priorities

A �uent f can hold, respectively not hold, at a time point t for di�erent reasons:
because an observation says so, it is a direct e�ect of an action, it is the conclusion
of an applicable state default or simply because of persistence. Whenever two of
these reasons are in con�ict, for instance persistence says f should be true at t
while an action e�ect says f should be false, we somehow have to decide for a
truth value of f . We now want to show that the extensions of the translated AFs
FΣ satisfy a certain priority ordering among these reasons.

Theorem 2. Let Σ be a domain and FΣ the associated AF, and consider reasoning
in the stable, complete, preferred and grounded semantics. Concerning the causes
that in�uence whether �uents hold at a time point, we have the following:

(1) observations override action e�ects, (2) action e�ects override default
conclusions, (3) default conclusions override persistence and (4) the frame prob-
lem is solved.

Hence when, for example, persistence says f should be true and a direct e�ect
says f should be false, then the preferred cause �direct e�ect� takes precedence
and f will indeed not hold. Above, default conclusions refers to the consequents
of applicable state defaults, where we recall that violated state defaults are inap-
plicable at the next time point. So if, in our running example, the machine is On
and ¬Cool at one time point, the default statement normally Cool if {On} is
violated and ¬Cool will persist. We have to note that Theorem 2 is not obvious
and the proofs of the propositions about each of the items above are quite lengthy.



4.2. Extensions

The results of the previous section show that the argumentation semantics con-
sidered in this paper respect a suitable priority ordering among causes. If this
ordering is the same across the semantics, the reader may ask, then where lies the
di�erence between them? Roughly, the di�erent semantics are used to model dif-
ferent types of knowledge (complete v. incomplete) and modes of reasoning (well-
founded v. hypothetical). The grounded semantics, for example, accepts only con-
clusions that are well-founded with respect to de�nite knowledge. However, this
may lead to the agent having only incomplete knowledge about the domain. The
stable semantics, on the other hand, may make unproven assumptions about the
world, but provides complete knowledge about the domain in each extension:

Proposition 3. Let Σ be a domain with associated AF FΣ = (A,R). For each
E ∈ Est(FΣ), t ∈ T and f ∈ F we have either holds(f, t) ∈ E or holds(¬f, t) ∈ E.

While this result hints at the bene�ts of using the stable semantics for rea-
soning about actions with our frameworks, this conclusion has to be quali�ed: the
existence of stable extensions cannot be guaranteed in general.

4.3. Computing Extensions

We already observed that the constructed AF FΣ may be in�nite but is in any
case �nitary. Hence, using a result of Dung, we may obtain the unique grounded
extension of FΣ by iteratively applying the characteristic function on the empty
set [5]. Unfortunately, there is no similar (constructive) method for the other
semantics we are interested in. Nevertheless we will show that the evaluation of an
argument from FΣ can be implemented in principle since we only have to compute
extensions in �nite subframeworks. Here, the concept of strati�cation plays the
lead. A strati�cation divides the arguments of an AF into layers that satisfy a
simple syntactic dependency criterion: a layer of an argumentation framework is
any subset of its arguments that is not attacked from the outside. If there is an
increasing sequence of layers whose union is the set of all arguments, then the
argumentation framework is called strati�ed.

De�nition 8. Let F = (A,R) be an argumentation framework. A set L ⊆ A is a
layer of F i� for all a ∈ L and b ∈ A \L we have (b, a) /∈ R. A strictly increasing
sequence of layers L0 ( L1 ( . . . is a strati�cation of F i� L0 ∪ L1 ∪ . . . = A.

We call an strati�cation in�nite (�nite) i� it possesses in�nitely (�nitely)
many layers. For a layer Li, the argumentation framework associated to layer Li
is Fi def= (Li, R∩ (Li×Li)). An AF FΣ automatically constructed from a domain
Σ allows for a fairly straightforward de�nition of a strati�cation:

De�nition 9. Let Σ be a domain over vocabulary (F,A,T,≺) and FΣ = (A,R)
be the argumentation framework obtained from it by the encoding speci�ed in
Section 3.2. For time points s, t ∈ T de�ne

L(t) def=
{
holds(l, t), obs(l, t), viol(l, t), def (l, t)

∣∣ l ∈ F±
}
∩A

L(s, t) def=
{
frame(l, s, t), dir(l, a, s, t)

∣∣ l ∈ F±, a ∈ A
}
∩A



For a set B ⊆ A of arguments denote by T(B) the time points occurring in B.
Now de�ne by induction on natural numbers the sets L0

def= L(0) and for n ∈ N,

Ln+1
def=
⋃
s∈T(Ln),s≺t(L(s) ∪ L(s, t) ∪ L(t))

For the strati�cation, we construct the bottom layer by taking all arguments
about the least time point 0. The following layers are then de�ned inductively
according to the time structure: in each step, we add the arguments about direct
successors of the time points in the arguments in the previous layer. It is straight-
forward to prove that the construction as a matter of fact yields a strati�cation:

Proposition 4. Let Σ be a domain over vocabulary (F,A,T,≺); let FΣ = (A,R)
be the AF constructed from Σ by the encoding from Section 3.2. Then the sets
L0, L1, . . . obtained according to De�nition 9 are a strati�cation for FΣ.

Of course the same holds for �nite strati�cations, that end in some layer
Lm = A. The real power of strati�cations lies however in being able to decide the
status of an argument after discarding a possibly in�nite part of the framework:

Proposition 5. Let Σ be a domain and FΣ = (A,R) its associated argumentation
framework with strati�cation L0, L1, . . . according to De�nition 9. For any seman-
tics σ ∈ {gr, co, pr} we have: an argument a is credulously/sceptically accepted in
FΣ w.r.t. σ i� a is credulously/sceptically accepted in Fn w.r.t. σ where Fn is the
AF associated to the least layer Ln such that a ∈ Ln.

It is crucial to note that this result makes implementing our approach feasible
in principle, since it reduces the relevant decision problems about in�nite AFs to
equivalent problems about �nite AFs. What is more, translating action domains
to strati�ed argumentation frameworks also provides an important step towards
an e�cient implementation: An intelligent agent that constantly executes actions
has to decide upon future actions in a timely manner. Consider an agent that has
executed m actions since having been switched on. To plan n time points into the
future, it needs to consider an argumentation framework of a size that grows in
m+ n. As time passes, n (the lookahead into the future) might be kept constant
but m (the history of past actions) will surely grow up to the point where despite
only involving a linear blowup the associated AFs are too large for the agent to
handle. The solution to this problem is known as progression in the reasoning
about actions community: every once in a while, the agent replaces its knowledge
base about the whole past by a smaller but equivalent one about the present,
thereby e�ectively resetting m [13]. That way, the size of the knowledge base
the agent handles can be signi�cantly reduced while keeping the information it
contains. For grounded semantics, the obvious technical approach to progression
is then to replace the sub-framework F ′Σ speaking about the past until time point
t by its unique grounded extension E′, thereby obtaining a splitting [1]. Empirical
evidence about extensions of AFs admitting a splitting [4] shows that this provides
a promising basis for implementing the approach presented in this paper.

5. Related Work and Conclusions

We presented an encoding of action domains into abstract argumentation frame-
works. In being independent of a particular notion of time and able to do default



reasoning in dynamic domains, the approach goes well beyond the capabilities of
current action languages. We used theoretical results from argumentation to show
how our approach can be put to use and argue how it can be implemented.

In continuation of their preliminary earlier work [?], Michael and Kakas devel-
oped an approach that combines default reasoning with temporal reasoning and
is based on assumption-based argumentation [?,9]. The approach uses a �xed lin-
ear time structure and a tailor-made de�nition of argumentation semantics. The
work presented in this paper uses a more general notion of time, furthermore we
employ abstract argumentation with the standard de�nitions of its semantics, and
can immediately use existing results from this area, in particular existing solvers.
Earlier, Kakas et al. [7] translated domains in an action language based on linear
time into the argumentation framework of logic programming without negation
as failure, a contribution much closer to the original work on action languages [6].
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